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Abstract

The success of deep convolutional networks on image

classification and recognition tasks depends on the avail-

ability of large, labeled datasets, but it can be difficult to

obtain a large number of accurate labels. To deal with

this problem, we present Nonlinear, Noise-aware, Quasi-

clustering (NNAQC), a method for learning deep convolu-

tional networks from datasets corrupted by unknown label

noise. We append a nonlinear noise model to a standard

convolutional network, which is learned in tandem with the

parameters of the network. Further, we train the network

using a loss function that encourages the clustering of train-

ing images. We argue that the non-linear noise model, while

not rigorous as a probabilistic model, results in a more

effective denoising operator during backpropagation. We

evaluate the performance of NNAQC on artificially injected

label noise to MNIST, CIFAR-10, CIFAR-100 and ImageNet

datasets and on a large-scale Clothing1M dataset with in-

herent label noise. On all these datasets, NNAQC provides

significantly improved classification performance over the

state of the art and is robust to the amount of label noise

and the training samples.

1. Introduction

The last decade has seen dramatic advances in image

classification, image captioning, object recognition, and

more, owing mostly to deep convolutional neural networks

(CNNs) trained on large, labeled datasets [13, 18, 29]. Re-

searchers often benchmark the performance of these algo-

rithms on standard, curated datasets such as MNIST, CI-

FAR, ImageNet, or MSCOCO [15, 12, 6, 18]. However,

Figure 1: NNAQC architecture for learning deep CNNs

from noisy labels. The learned Noise model act as a denos-

ing operator while backpropagation.

use of curated data sets elides a crucial point: in practical

datasets, labels are not always reliable. “Crowdsourced” la-

bels obtained from social media or other non-expert sources

are subject to error, and in subjective tasks even humans or

experts may disagree on the correct label. (For a taxon-

omy of types and sources of label noise, see [7] and the

references therein.) As deep learning systems become more

complex and are trained on even more massive datasets, it

becomes increasingly difficult to obtain clean labels. In this

scenario, an approach to learning that accounts for noisy

labels is needed.

In this paper, we present a two-pronged approach, as

shown in Fig. 1, to learning CNNs from training sets cor-

rupted by label noise having unknown statistics. The first

prong is to augment the CNN architecture with a nonlinear

model for the label noise, which is learned during training.

A challenge with this approach is that the model is underde-

termined: when CNN outputs disagree with the labels pro-

vided, it is not clear whether the CNN should update its

weights to match the noisy labels or update the noise model

to account for the possibility of incorrect labels. The non-
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linear model turns out to be particularly effective in han-

dling these situations. We show that the proposed model

is actually non-rigorous as a transition probability between

clean and noisy labels; however, it results in a “denoising”

operator that better handles errors when training the CNN

via backpropagation. Because the noise model is not used

at test time, learning an accurate and rigorous noise model

is less important than the impact of the noise model on

CNN training. The second prong is to augment the standard

cross-entropy loss with a term that encourages the CNN to

cluster images in feature space. This allows the network

to learn from the natural clustering of the data, even when

labels are unreliable. We term the combined approach Non-

linear, Noise-aware, Quasi-clustered learning (NNAQC).

We demonstrate the performance of NNAQC on the

MNIST, CIFAR-10, CIFAR-100 and ImageNet datasets

corrupted by label noise. On these datasets, NNAQC ex-

hibits state-of-the-art performance in terms of classifica-

tion accuracy over a clean test set. The results show

that NNAQC is scalable to a large number of image cate-

gories. The results are robust to label noise, achieving near-

optimum performance when there is little noise, and main-

taining classification accuracy as the label noise increases.

We emphasize that this robustness does not require knowl-

edge of the label noise statistics or tuning of hyperparame-

ters. The performance of NNAQC degrades gracefully as

the training size decreases, suggesting that it sufficiently

regularizes the learning of the combined noise and classi-

fication model. Indeed, in some cases the performance is

better when using fewer training samples, which suggests

that the sample complexity of the model is occasionally too

high for the given dataset, in which case regularization in

the form of early stopping improves performance. Finally,

we evaluate NNAQC on Clothing1M [33] dataset, consist-

ing of 1M images with noisy labels.

The rest of the paper is organized as follows. First,

we review the existing literature on this subject in Section

2. Then, we describe the details of the proposed approach

NNAQC and its different components in Section 3. Finally,

in Section 4 we present experimental results on variety of

datasets and conclude our work with future directions.

2. Relationship to Prior Work

This problem is closely related to semi-supervised and

weakly-supervised learning, for which there is an extensive

body of work. We refer the reader to [34] for survey.

Previous work addresses the question of learnability

when labels are binary and label noise is i.i.d. and class-

independent [1], and provides sample complexity bounds in

terms of the VC dimension for the 0-1 loss. More recently,

[23] provides sample complexity bounds for more general

loss functions, in terms of the Rademacher complexity, for

class-conditional label noise having known statistics. The

upshot of these works is that if labels are flipped with proba-

bility η, the sample complexity increases roughly by a factor

of 1/(1−2η)2. Equivalently, the generalization error scales

roughly as 1/(
√
n(1 − 2η)) instead of the usual

√

1/n.

Other possible solution to this problem includes estimation

of the noise rate. A class conditional estimator for estimat-

ing the noise rate is proposed in [19].

Earlier works consider label noise for general learning

algorithms. For example, [14] presents a method for learn-

ing a kernel-based classifier from noisy labels with un-

known statistics. Using an EM-style algorithm, their ap-

proach learns jointly a generative noise model and a classi-

fier. Similarly, [25] employs an EM-style algorithm to es-

timate the reliability of labels. Other techniques detect and

discard samples with anomalous labels [5] or relabel erro-

neous samples [4]. In a similar vein to [23], a recent work

shows that careful choice of the loss function leads to learn-

ing that is provably robust to label noise [22].

Recently, authors have begun designing CNNs to deal

with label noise for image classification [20, 32] and text

classification [11, 24]. In some of the approaches [27, 10],

a standard CNN is augmented with a generative noise model

that must be learned in tandem with the CNN parameters. A

joint optimization framework presented in [28] simultane-

ously learns the parameters and estimates the true labels. As

mentioned above, the augmented model is underdetermined

and must be regularized, else the network may choose the

identity as the noise transition matrix. Each of these works

imposes a different regularization term to encourage a non-

trivial noise model: [27] imposes a cost on the trace of

the label noise transition probability matrix, whereas [10]

uses Dropout regularization. In [17], an unified distillation

framework is proposed to learn CNN from the noisy labels.

This framework uses label relations in knowledge graphs

and a small clean dataset to learn a classifier from noisy la-

bels. [21] proposes to train in parallel two neural networks,

which weights are updated only when label predictions dis-

agree.

A recent stream of work exploits an additional model

(again, a neural network) to denoisify /take into account the

confidence of prediction on noisy examples [33, 31]. Simi-

lar to [23], [24] estimates a noise model in a theoretical mo-

tivated manner during a pre-training phase of the network,

and then correct the loss function. It estimates the transition

matrix heuristically but with the large number of classes this

estimation is not easy to obtain. On CIFAR-10, [27] pro-

vides competitive performance as long as the label noise is

not too strong. Rather than learning a noise model directly,

[26] employs a bootstrapping-style approach in which the

loss function encourages consistent predictions for similar

input images. In a similar vein, [3] identifies and discards

outliers in order to fine-tune a pretrained CNN.

The proposed NNAQC incorporates the spirit of [27,
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10]—in that it learns an explicit noise model—and clus-

ters the data via an EM-style approach. The intuition is to

identify mislabeled images by their inconsistency with sim-

ilar images, which combats label noise and emulates unsu-

pervised learning. The upshot of this work is that a label

noise model is beneficial, especially when it is regularized

by an unsupervised component in the loss function. How-

ever, learning a correct noise model is neither necessary nor

sufficient for state-of-the-art performance. Indeed, NNAQC

uniformly outperforms a genie-aided CNN, similar to [10].

NNAQC denoise the gradient of the loss by a denoising op-

erator before being fed into the gradient of the base model

parameters. Our approach produces a very diffuse denois-

ing operator and thus prevents the base model from learning

the noisy label directly.

3. Proposed Approach

We consider the supervised learning of a classifier of

d-dimensional images that belong to one of L image

classes. Let the (noise-free) training set be denoted by

D = {(x1, y1), (x2, y2), · · · , (xn, yn)}, where xi ∈ R
d is

the ith image and yi ∈ {1, . . . , L} is its label, and where

implicitly there is an unknown joint distribution p(x, y) on

the image/label pairs. Ideally, one would train a classifier

on the training set D, but we suppose that instead of ac-

cess to the noise-free training set D, we obtain a training

set with unreliable labels. Let this noisy training set be de-

noted by D′ = {(x1, y
′
1), (x2, y

′
2), · · · , (xn, y

′
n)}, where y′i

is a potentially erroneous label for xi. We suppose class-

conditional label noise, where the noisy label y′i depends

only on the true label yi, but not on the image xi or any

other labels yj or y′j . Under this model, the label noise is

characterized by the conditional distribution p(y′|y), which

we describe via the L×L column-stochastic matrix φ, with

φij = p(y′ = j|y = i). We use a noise model parameter-

ized by the overall probability of a label error, denoted by

0 ≤ p ≤ 1:

φ = (1− p)I+ p∆, (1)

where I is the identity matrix, and ∆ is a matrix with zeros

along the diagonal and remaining entries of each column

are drawn uniformly and independently from the L − 1-

dimensional unit simplex. That is, the label error proba-

bility for each class is p, while the probability distribution

within the erroneous classes is drawn uniformly at random.

Our objective is to train a CNN, using the noisy set D′,

that makes accurate predictions of the true label y given an

input image x. It is straightforward to train a CNN that

predicts the noisy labels.The conditional distribution for the

noisy label of the image x can be written as:

p(y′ = ŷ′|x) =
∑

i

p(y′ = ŷ′|y = ŷi)p(y = ŷi|x). (2)

One can learn the classifier associated with p(y′ = ŷ′|x) via

standard training on the noisy set D′. To predict the clean

labels, i.e. to learn the conditional distribution p(y = ŷi|x)
requires more effort, as we cannot extract the “clean” clas-

sifier from the noisy classifier when the label noise distribu-

tion is unknown.

3.1. NNAQC

The architecture of our proposed framework is shown

in Fig. 2. We take a standard deep CNN—which we call

the base model—and augment it with a model that accounts

for the label noise. The base and noise models are trained

jointly using D′ via stochastic gradient descent. The noise

model is used only during training, in which it effectively

“denoises” the gradients associated with the noisy labels

during backpropagation in order to improve the learning of

the base model. Because there is no need to predict the

noisy labels of test images, we disconnect the noise model

at test time and classify using the base model alone.

Figure 2: The nonlinear, noise-aware, quasi-clustering

(NNAQC) framework.

We stack an additional one fully-connected process-

ing layer 1 on top of base CNN model. We lump the

base model parameters—processing layer weights and bi-

ases, etc.—into a parameter vector Θ. The high-level fea-

tures that the base model outputs, which we denote via

t1(x; Θ) ∈ R
L, are put through the usual softmax func-

tion: σ(z)i =
exp(zi)∑

L
j=1

exp(zi)
to produce the conditional dis-

tribution of the clean label; i.e. p(y|x; Θ) = σ(t1(x; Θ)),
from which we can predict the clean label of an image x.

A distinct feature of the proposed approach is that we use a

nonlinear transformation between the estimate of the clean

labels and the estimate of the noisy labels. In an abuse of

notation, let ŷ = σ(t1) denote the probabilities p(y|x; Θ).
To obtain the probabilities of the noisy labels, denoted ŷ′,
we perform a softmax regression on ŷ:

p(y′|x; Θ,W ) := σ(Wσ(t1(x; Θ))), (3)

where W ∈ R
L×L is a square matrix that governs the tran-

sition probabilities. We emphasize a subtle point: This for-

mulation is not rigorous probabilistically. Equation (3) does

1We emphasize that the NNAQC framework can be applied to any CNN

architecture.
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not correctly compute marginal probability of the noisy la-

bels according to (2). To be consistent with the law of total

probability, we should calculate conditional distribution as

p(y′ = i|y = j;W ) = [σ(Wej)]i, (4)

where ej is the jth elementary vector. From this conditional

distribution, the distribution on y′ should be

p(y′|x; Θ,W ) = σ(W )σ(t1(x; Θ)), (5)

where σ(W ) is the softmax function applied to each column

of W . This is equivalent to the architecture used in [27],

where a simple linear layer with column-stochastic weight

matrix is learned, ideally to match the matrix φ that governs

the label noise. By taking a nonlinear transformation of ŷ,

instead of a linear transformation associated with transition

probabilities, we violate the laws of probability in comput-

ing ŷ′. Nevertheless, empirically we see that the resulting

classifier has excellent performance, and in the next part we

give a justification for this approach.

Now, the challenge is to learn jointly the CNN parame-

ters Θ and the nonlinear noise model parameters W . One

approach is to minimize the standard cross-entropy loss of

the end-to-end model, which we call the nonlinear noise-

aware loss LNNA:

LNNA(Θ,W ;D′) = − 1

n

n
∑

i=1

log p(y′ = ŷ′i|xi; Θ,W )

= − 1

n

n
∑

i=1

log[σ(Wσ(t1(xi; Θ))]ŷi
.

Empirically we see that this loss function leads to quite

good predictions of the true labels. However, LNNA does

not directly encourage the model to predict correctly the

true label ŷ as the true label; instead, the prediction of ŷ
is judged only indirectly via the noisy label predictions ŷ′.
Indeed, this approach treats ŷ as an additional hidden layer

that acts as an information bottleneck.

To encourage good predictions of ŷ, we need to feed ŷ
into the loss function directly. To do so, we introduce an

additional term that encourages a “quasi-clustering” of the

training images. Images that are close in feature space usu-

ally will have the same label, a fact that we can exploit when

dealing with noisy labels. We penalize the cross-entropy be-

tween a linear combination of the predicted labels and the

noisy labels and the predicted labels themselves, i.e.

LQC(Θ;D′) = − 1

n

n
∑

i=1

(βp(ŷi|xi; Θ) + (1− β)y′i)

× log p(ŷi|xi; Θ),

= − 1

n

n
∑

i=1

(β[σ(t1(x; Θ))]ŷi
+ (1−β)y′i)

× log[σ(t1(x; Θ))]ŷi
.

This type of loss function has been used widely in the liter-

ature, such as in [8, 26, 2], and it has the effect of clustering

the data. For a large value of β, minimizing this loss func-

tion encourages ŷ toward a low-entropy vector, i.e. one with

most of its mass on a single point. In order to make such

confident predictions, the CNN needs to map similar output

features to similar classes, which is equivalent to cluster-

ing. Finally, we form the nonlinear, noise-aware, quasi-

clustering loss, denoted L, by taking a convex combination

of the two losses:

L(Θ,W ;D′) = αLNNA(Θ,W ;D′)+(1−α)LQC(Θ;D′),
(6)

and we minimize the NNAQC loss via standard back-

propagation over the noisy training set D′. We obtain the

values of α and β via cross-validation.

3.2. Justifying the Nonlinear Noise Model

In this section, we study the effect of the proposed non-

linear noise model. At first instance, it seems that we are

violating the basic laws of probability by adding a nonlin-

ear softmax layer at the output as described above. We em-

phasize, however, that the role of the noise model is not to

make accurate predictions of the noisy labels, but to encour-

age the learning of a CNN that makes accurate predictions

of the clean labels instead of noisy ones. Therefore, the

ultimate test of a noise model is the extent to which it im-

proves training. To that end, the NNAQC architecture is

designed not to learn an explicit noise model, but to learn a

“denoising” operator that effectively filters the gradients as-

sociated with the noisy labels. To see the benefits of this ap-

proach, we examine the back-propagation gradient steps for

the base model parameters for the NNAQC architecture and

for a CNN augmented with a standard linear noise model.

Figure 3: Augmented linear layer with Softmax

In Fig. 3, we zoom in on the NNAQC architecture. For

an input sample x, we lump all the initial convolutional,

ReLu and pooling layers into one function f1(Θ, x) with

parameters Θ, and we obtain the normalized prediction of

true labels ŷ via the first softmax layer σ(t1). We pass the

clean label predictions through the matrix W and take the

softmax function to obtain the noise label distribution ŷ′. To

observe the effect of the prediction ŷ and the noise model

parameters W on the learning process, we write down the
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gradient of the loss function L with respect to Θ:

∂L
∂Θ

=
∂L
∂ŷ′

∂σ(t2)

∂t2

∂l1(ŷ,W )

∂ŷ

∂σ(t1)

∂t1

∂f1(Θ, x)

∂Θ
(7)

=
∂L
∂ŷ′

(

∂σ(t2)

∂t2
W

∂σ(t1)

∂t1

)

∂f1(Θ, x)

∂Θ
. (8)

For comparison, in Fig. 4 we consider a linear noise

model as described in (4)-(5), where the matrix W deter-

mines the noise model via the stochastic matrix σ(W ). We

write the gradient steps similar to the previous case as:

∂L
∂Θ

=
∂L
∂ŷ′

∂l1(ŷ, σ(W ))

∂ŷ

∂σ(t1)

∂t1

∂f1(Θ, x)

∂Θ
(9)

=
∂L
∂ŷ′

(

σ(W )
∂σ(t1)

∂t1

)

∂f1(Θ, x)

∂Θ
. (10)

Comparing (8) with (10) reveals a few crucial points.

First of all, in each case the gradient of the loss ∂L/∂ŷ′
is “denoised” by an operator before being fed into the gra-

dient of the base model parameters. This is the main role

of the noise model: to prevent the base model from learning

the noisy labels directly. In the case of NNAQC, the denois-

ing operator is
∂σ(t2)
∂t2

W ∂σ(t1)
∂t1

, and in the case of the linear

noise model, the denoising operator is σ(W ) ∂σ(t1)
∂t1

.

Figure 4: No softmax augmentation

Second, we find that the NNAQC denoising operator is

more diffuse than the linear noise model. To see this, con-

sider an estimate ŷ that places most of the probability on a

single class. In NNAQC, the resulting noisy label predic-

tion is ŷ′ = σ(Wŷ); applying the softmax to Wŷ “spreads

out” the probabilities, and the prediction of the noisy label

will be less concentrated on a single class than the equiva-

lent linear model. In other words, the nonlinear noise model

is intrinsically less confident than a rigorous linear model.

Because the denoising operator contains the term
∂σ(t2)
∂t2

,

which is a function of σ(Wŷ), the resulting operator is more

diffuse, i.e. its columns are less concentrated on individual

values.

A more diffuse operator allows for more flexibility in

handling disagreements between the CNN model predic-

tions and the noisy labels. Consider the case in which the

CNN outputs a prediction ŷ concentrated around a single

value (say, i) that is different than the (perhaps erroneous)

training label y′ (say, j). Here, the challenge is to decide

whether y′ is an error or whether the CNN prediction is bad.

In a linear noise model, the denoising operator has most of

its weight concentrated on the ith row. On the other hand,

the loss gradient ∂L/∂ŷ′ has all of its weight on the jth

row. Therefore, the denoising operator wipes out most of

the gradient, and the result is largely to ignore the sample.

With NNAQC, the denoising operator is not as concentrated

around row i, so the backpropagation step attempts to learn

more from the training point, even though the model pre-

diction and noisy label disagree.

Similarly, NNAQC prevents the model from being over-

confident when the model and noisy label agree. If the

CNN makes a confident prediction ŷ and i = j, the com-

bination of a non-diffuse denoising operator and the gradi-

ent ∂L/∂ŷ′ has large-magnitude elements, and the model is

overconfident is supposing that the label is not noisy. The

diffuse denoising operator resulting from NNAQC, on the

other hand, spreads out the gradient, preventing an over-

aggressive backpropagation step. To sum up, the NNAQC

denoising operator encourages the CNN to learn from a

training sample when there is disagreement, and discour-

ages overfitting when there is agreement. Finally, the quasi-

clustering regularization in our approach in Fig. 2 provides

information to base model about the true labels by clus-

tering all the samples that are close in feature space. We

also write the backpropagation gradient steps with quasi-

clustering regularization as ∂L
∂Θ = γ ∂σ(t1)

∂t1

∂f1(Θ,x)
∂Θ where,

γ =
(

∂L
∂ŷ′

∂σ(t2)
∂t2

W
)

+
∂L′

QC

∂ŷ
.

We also consider the learning performance when the

noise model φ is known exactly. One might expect that

learning a base CNN using a linear noise model, with the

transition matrix set at φ, would provide superior perfor-

mance. Somewhat surprisingly, [10] reports cases where

even this “genie-aided” approach is outperformed. We

observe the similar behavior; augmenting the CNN with

the true noise model performs significantly worse than

NNAQC. As suggested by the above analysis, the nonlinear

noise model simply results in a more effective denoising op-

erator, even when the model does not learn the underlying

noise statistics.

4. Experimental Results

4.1. General Setting

In all the experiments, we use the MATLAB toolbox

MatConvNet [30]. We evaluate the performance of the clas-

sifier on the MNIST [16], CIFAR-10, CIFAR-100 [12], Im-

ageNet [6] and Clothing1M [33] datasets. We use the de-

fault CNN architectures and parameters provided in Mat-

ConvNet for CIFAR-10 and MNIST datasets as a base CNN

model. For other datasets, we use the CNN architectures

that provide the best classification accuracy on correspond-

ing clean datasets and use it as a base CNN. We provide the

details of these architectures in subsequent sections. For all
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C
IF

A
R

-1
0

Training samples 50K 30K 10K

Noise % 0 5 10 30 50 70 0 5 10 30 50 70 0 5 10 30 50

Base model 20.49 23.00 25.30 30.49 39.47 65.60 22.73 24.92 27.63 35.09 45.51 70.30 29.10 30.98 33.94 43.18 52.54

Genie-aided 20.50 21.07 24.32 28.09 39.29 62.38 22.30 23.16 23.77 30.96 40.18 75.51 27.57 29.05 29.17 41.87 47.02

Genie-aided (QC) 20.98 22.22 23.23 25.52 33.98 57.57 21.91 23.59 24.37 30.40 39.63 69.09 28.23 29.23 29.80 41.50 46.71

Trace 22.48 23.00 23.90 27.20 39.06 63.00 23.80 24.50 26.23 30.51 44.60 70.00 31.26 31.71 33.20 41.10 50.21

Bootstraping 23.33 23.76 25.00 28.64 35.07 66.14 24.50 25.08 26.41 30.68 36.89 61.64 34.00 31.85 33.40 38.27 46.21

Dropout 37.29 36.90 31.30 25.40 31.28 63.04 44.67 42.73 36.24 33.13 34.50 66.70 43.64 37.43 40.20 41.08 43.64

F-correction 21.00 21.45 22.10 23.70 29.12 58.91 23.40 23.52 24.12 26.35 32.65 61.20 31.09 32.11 35.00 42.28 44.41

o
u

rs NNAQC 21.11 21.85 22.03 24.20 28.41 56.12 22.72 22.91 23.01 25.27 29.48 56.56 29.53 29.92 31.02 33.39 37.92

Regu. NNAQC 20.96 21.40 22.05 23.10 28.06 56.09 23.00 23.14 23.58 25.21 29.40 56.9 29.00 29.06 30.21 31.86 37.80

M
N

IS
T

Training Samples 60K 40K 20K

Noise % 0 5 10 30 50 70 0 5 10 30 50 70 0 5 10 30 50

Base model 00.89 02.67 03.68 04.50 34.50 48.80 01.18 03.62 06.33 14.78 39.47 56.93 02.42 04.86 07.86 21.68 43.20

Genie-aided 00.89 02.67 03.68 04.50 34.50 48.80 01.48 01.61 02.72 04.37 12.33 50.40 02.39 03.15 04.01 8.47 21.63

Trace 01.29 01.40 01.46 02.12 03.80 24.20 01.50 01.67 02.00 02.80 04.10 26.32 03.32 03.40 03.89 04.93 08.02

Bootstraping 01.29 01.30 01.41 02.00 03.60 22.20 01.59 01.77 02.07 02.97 04.19 30.10 03.44 03.67 04.02 05.36 08.59

Dropout 01.29 01.29 01.32 01.83 02.83 24.60 01.51 01.54 01.90 02.45 03.90 38.07 02.69 03.03 03.39 04.75 06.13

F-correction 01.12 01.13 01.19 01.50 02.23 21.00 01.42 01.45 01.60 02.10 02.91 23.07 03.17 03.23 03.53 04.46 06.11

o
u

rs NNAQC 01.14 01.15 01.24 01.83 02.20 16.42 01.49 01.50 01.51 02.19 03.01 17.65 03.00 03.21 03.30 03.57 06.32

Regu. NNAQC 01.01 01.08 01.18 01.46 02.19 18.70 01.36 01.37 01.40 02.09 02.80 21.58 03.02 03.04 03.14 03.31 05.52

Table 1: NNAQC performance for different datasets and compared to other approaches w.r.t number of training samples.

the NNAQC experiments we use α = 0.9 and β = 0.9. We

compare NNAQC to several other algorithms: a standard,

noise-ignorant CNN trained on D′ (“base model”); a CNN

augmented with the true noise model φ (“genie-aided”); the

genie-aided model using the quasi-clustering loss function

(“genie-aided with QC”); the dropout-regularized model

of [10] (“dropout”); the trace-regularized model of [27]

(“trace”); the soft bootstrapping algorithm of [26] (“boot-

strapping”); and the forward loss correction of [24] (“F-

correction”). We also try adding dropout regularization

to the noise model of NNAQC (“regu.NNAQC”). For an

apples-to-apples comparison we fixed the base model for all

the approaches and implement their methods on top of it. In

all the experiments we train CNN end-to-end via stochastic

gradient descent method with batch size 100. For CIFAR-

10 and MNIST datasets, we run the experiment 5 times for

each setting and report the mean.

4.2. Artificial Label Noise

To examine the robustness of NNAQC on artificially

injected noise, we corrupt the true labels according to (1)

with p ∈ {0, 0.05, 0.10, 0.30, 0.50, 0.70}.

CIFAR-10: We train our CNN on CIFAR-10 dataset

[12], a subset of 80 million Tiny Image dataset [29]. It

contains natural images of size 32×32×3 from 10 different

categories. It has 50K training and 10K test images. On

the clean dataset, the base model CNN achieves 20.49%
classification error. We produce a noisy dataset D′ by

corrupting the labels according to the noise distribution

(1) for each value of p. Table 1 first row shows the

comparative performance of NNAQC when the networks

are trained using 50K, 30K, and 10K training samples,

respectively. In all cases, NNAQC, perhaps regularized

by dropout, substantially outperforms other approaches.

This includes the genie-aided approaches, bolstering our

claim that it is less important to know the noise statistics

than to learn an effective denoising operator for training.

Further, NNAQC is robust to variations in the noise level,

recovering near-optimum performance when there is little

noise. Although, we notice that NNAQC performances

better than NNAQC with dropout regularization (Regu.

NNAQC) in some of the cases, but this performance gap is

negligible. However, we observe a significant performance

gap with the datasets having more than 10 classes.

To evaluate the robustness of NNAQC with respect to

varying training dataset size, in Table 1, we show the per-

formance of all the approaches as a function of number of

training samples. For every dataset, we starts with original

number of training samples and keep on decrease the sam-

ples by 20K, as shown in Table 1. For CIFAR-10 dataset,

in column 1 we train all the models with all 50K training

samples, in column 2 we train all the models with 30K (col-

umn 2) training samples and so on. We observe that in all

the noise regimes, when the training sample size is decreas-

ing from 50K to 30K to 10K, change in NNAQC perfor-

mance is very small, while the performance of other ap-

proaches shows a high performance gap, therefore, depends

on amount of training samples. We also find that the per-

formance of F-correction [24] is close to the performance

to the NNAQC, however, as we reduce the training dataset

size NNAQC outperforms F-correction significantly. Since

[24] works by estimating the noise transition matrix, the

performance gap on smaller training set further strengthens

our claim that learning a correct noise model is neither nec-

essary nor sufficient for state-of-the-art performance in the

presence of label noise.

We also compare NNAQC to [3], which uses a pre-

trained AlexNet to obtain high level features for training

images and fine-tunes a final softmax layer on D′. Because
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they use a pre-trained network where NNAQC and other

approaches train a CNN from scratch, a direct comparison

of results is impossible. However, in the presence of 50%
noise for 50K training samples, [3] reports 28% classifi-

cation error rate, compared to 28.41% for NNAQC. That

is, NNAQC performs competitively with this approach even

though it is not pre-trained, which may indicate that it is a

more powerful approach overall.

MNIST: We perform similar experiments on handwritten

digits dataset MNIST [16], which contains 60K training

images of the 10 digits of size 28 × 28 and 10K test im-

ages. We produce a noisy dataset D′ as in the CIFAR-10

case. On the clean dataset, the base model CNN achieves

a classification error rate of 0.89%. In Table 1 (Last row)

we again see that NNAQC provides superior performance

overall and is robust to both high noise power and a smaller

training set.

Similar to CIFAR-10, we compare the performance of

NNAQC against the pre-trained /fine-tuned strategy [3] on

the MNIST dataset. In the presence of 50% noise NNAQC

outperforms the [3], achieving 2.2% classification error

while [3] achieves at minimum 7.63% classification error.

CIFAR-100: We next show the performance of NNAQC

on a dataset with more classes, making the problem more

challenging: CIFAR-100 [12] which consists of 32 × 32
color images of 100 different categories containing 600 im-

ages each. There are 500 images for training and 100 im-

ages for testing per class. Because of the complexity of

this datatset, we use a different base CNN model with two

conv+ReLU+max pool layers, two FC layers and a softmax

layer. This is a low capacity CNN network (LC-CNN) with

a classification error rate of 50.9% on the clean dataset. In

order to verify that the robustness of NNAQC is not due

to the low capacity models, we also evaluate NNAQC on

a high capacity deep residual network (ResNet) [9] with

30.99% classification error rate on clean labels. We use

ResNet with depth 44 and the same training parameters as

described in [24].

We compare the NNAQC performance on CIFAR-100 in

Table 2. Here we train the networks on entire training data.

Similar to previous experiments we fixed the base model

CNN for all the approaches. In Table 2 (First row), we

show the competitive performance of NNAQC over other

approaches when trained on LC-CNN. We observed that the

performance of NNAQC on CIFAR-100 is consistent with

MNIST and CIFAR-10, proves the scalability of NNAQC.

Here, dropout particularly improves performance (Regu.

NNAQC), likely because the larger label noise model bene-

fits from regularization.

We also show the performance of NNAQC on ResNet

architecture in Table 2 (Second row). We observe that

among other approaches only F-correction performs equally

well with NNAQC at a number of occasions, however, with

L
C

-C
N

N

Noise % 0 5 10 30 50 60

Base model 50.90 52.48 53.82 60.38 68.46 88.20

Trace 53.12 54.27 55.00 58.70 64.50 84.12

Bootstraping 54.20 54.90 55.30 59.00 69.75 88.30

Dropout 65.80 63.54 62.01 57.76 63.24 84.19

F-correction 56.68 57.13 57.11 62.67 66.12 83.90

o
u

rs NNAQC 52.31 52.40 53.10 56.68 63.00 84.00

Regu. NNAQC 52.29 52.33 53.00 56.91 62.20 83.13

4
4

-l
ay

er

R
es

N
et

Noise % 0 5 10 30 50 60

Base model 30.99 31.54 33.86 36.50 64.60 84.89

Trace 31.56 31.50 34.10 36.00 65.41 84.82

Bootstraping 31.60 31.50 34.06 36.32 63.45 84.30

Dropout 55.20 53.04 52.13 37.68 64.11 85.00

F-correction 31.00 31.13 33.12 35.80 61.24 84.00

o
u

rs NNAQC 31.00 31.14 34.01 35.88 61.35 85.00

Regu. NNAQC 31.12 31.13 33.16 35.71 61.20 84.03

Table 2: NNAQC performance on CIFAR-100 with differ-

ent CNN architectures and compared to other approaches.

the LC-CNN the scenario is different—NNAQC performs

better than all the other approaches. Comparing NNAQC

performance on ResNet with LC-CNN, it is clear that the

NNAQC performance is independent of base CNN network

architecture. This claim is further strengthened by our ex-

periments on Clothing 1M datasets with different CNN ar-

chitectures in the next section.

ImageNet: We further test the scalability of NNAQC to

a 1000 class classification problem. We show the perfor-

mance of NNAQC on ImageNet 2012 dataset [6] which

has 1.3M image with clean labels over 1000 categories.

For this experiment, we use CNN model of Krizhevsky

et al. [13] as the base model. This CNN model has five

conv+RELU+max pool layers, two FC layers and a soft-

max layer. As described in [27], we generate a column

stochastic noise distribution matrix (φ) such that for a par-

ticular class, noise is randomly distributed to only 10 other

randomly chosen classes. For 50% label noise, each class

has 50% correct labels and other 50% labels are randomly

distributed among 10 randomly chosen classes. Since our

Im
ag

eN
et

Top 5 Val. error

Noise % 0 10 50

Base model 19.20 31.21 53.46

Trace 19.10 29.00 46.24

o
u

rs NNAQC 19.30 29.10 44.31

Regu. NNAQC 18.30 28.21 41.80

Table 3: ImageNet validation set classification error rate.

main intention here is to show the scalability of NNAQC

to a large number of classes and to maintain the simplic-

ity, we transfer the parameters of first four convolutional

blocks from a pre-trainined AlexNet model. While training,

we keep the parameters of first four convolutional blocks

(conv+ReLU+max pool) intact / frozen and only train the

last convolutional block, two FC layers, a softmax layer

and the stacked NNAQC layer. In Table 3 we compare the

NNAQC performance with the base Alexnet model (i.e., no
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noise model) on the validation set images, with 0%, 10%,

and 50%, randomly-distributed corrupted labels. We ob-

serve a slight performance gain for NNAQC over the base

model with clean labels-perhaps due to label noise inher-

ent in the ImageNet dataset. We observe that the 50% label

noise significantly hurts the performance of the base model

whereas the NNAQC withstands and shows a superior per-

formance (a clear gain of ∼ 11.0%) over the base model.

Here, dropout regularization (Regu. NNAQC) further im-

proves the overall performance by 2.51%.

4.3. Real Label Noise

Finally, we evaluate the performance of NNAQC on real

world noisy label dataset Clothing 1M [33] in terms of clas-

sification error rate. This dataset contains 1M images with

noisy labels from 14 different classes. Along with the in-

correctly labeled images, this dataset provides 50K clean

images for training; 14k for validation; and 10k for test-

ing. For this dataset, we use a 50-layer ResNet pre-trained

on ImageNet dataset as a base model. Similar to [24], we

train the network with different weight-decay parameter de-

pending on the training dataset size. In Table 4 we compare

the performance of NNAQC with a number of existing ap-

proaches.

Clothing 1M

# model /method init training error

1 AlexNet /cross- ImageNet 50k 28.17

2 AlexNet /trace #1 1M,50k 24.84

3 50-ResNet /cross- ImageNet 50K 25.12

4 50-ResNet /F-corr- ImageNet 1M 30.16

5 50-ResNet /cross- #4 50k 19.62

6 50-ResNet /[28] ImageNet 1M 27.77

7 50-ResNet /NNAQC ImageNet 50K 25.10

8 50-ResNet /NNAQC ImageNet 1M 27.73

9 50-ResNet /NNAQC ImageNet 1M, 50K 24.58

10 50-ResNet /cross- #8 50K 19.45

Table 4: NNAQC performance on clothing1M dataset. #10

shows the best results. #6 is reported results from [28]

and cross- represents the cross entropy loss.

At first, we see a clear performance improvement of

∼ 3% with ResNet in comparison to AlexNet (#1 vs #3).

On clean training images NNAQC (#7) performs better than

the base model (#3) as expected. On noisy images with Ima-

geNet pretraining, we gain a 3% performance improvement

compared to F-correction. Also, in comparison to a very

recent work [28] (#6 vs #8), NNAQC performance is very

competitive. Further, we observe the effect of availability

of clean 50k images on the NNAQC performance, that is,

given the clean labels, NNAQC performance improved by

∼ 3% (#8 vs #9). In a similar vein to [24], we first train

NNAQC on 1M noisy images (#8) and fine tune the network

with 50k clean images (#10), we observe that in comparison

to #5, the NNAQC outperforms all the methods in Table 4

and is very competitive overall.

4.4. Effect of Different Components

We perform an ablative study to observe the contribution

of individual components, the non-linear noise aware com-

ponent (NNA) and the quasi-clustering component (QC) on

the overall performance of NNAQC. To observe the effect

of non-Linear noise aware component, we train the NNAQC

with α = 1 in (6) and to observe the individual effect of

quasi-clustering component, we set α = 0 in (6).

Dataset Loss
Label Noise

0 5 10 30 50 70

CIFAR-

10

NNA 36.79 36.10 33.03 26.43 31.11 59.65

QC 23.32 23.57 25.09 28.64 35.07 65.20

NNAQC 21.11 21.85 22.03 24.20 28.41 56.92

MNIST

NNA 01.30 01.30 01.38 01.91 03.01 23.22

QC 01.34 01.42 01.61 02.27 04.15 26.10

NNAQC 01.01 01.08 01.18 01.46 02.19 18.70

CIFAR-

100

NNA 63.01 62.43 60.01 58.15 62.40 –

QC 54.20 54.90 55.30 59.00 69.75 –

NNAQC 52.29 52.33 53.00 56.91 62.20 –

Table 5: Effect of NNA and QC component on the overall

performance of NNAQC

In Table 5 we find that the individual components did

not perform well, whereas the combination of these com-

ponents results in the state-of-the-art performance. For in-

stance, when NNAQC is trained on CIFAR-10 with 50%
label noise, we achieve an overall classification error rate

of 28.06%. Now, if the QC loss component is removed (or

α = 1), the classification error rate jumps to 31.11%. Also,

when only the non-linear noise aware (NNA) component is

removed, that is α = 0, the classification error rate jumps to

35.07%. We observe the similar behavior with MNIST and

CIFAR-100 as well. Therefore, both the components con-

tribute to the overall performance of NNAQC. We cross-

validate the hyperparameter α on the set of noisy labeled

images and find that a value of α = 0.9 works best for a

majority of the experiments on different datasets.

5. Conclusion and Future Work

In this paper we propose a scalable and effective nonlin-

ear, noise-aware quasi clustering approach towards training

a deep CNN on noisy data labels. We show the performance

of NNAQC on variety of different datasets with different

noise regimes and varying training data sizes. Further, we

anticipate that our model can handle instance dependent la-

bel noise as well, that is, QC step accounts for instance-

dependent noise without learning a full instance-dependent

noise model. Future works shall consider analyzing the in-

stance dependent label noise.
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